

AIM

Accelerated Insertion of Materials

DARPA

AFRL

NAWC AD

Boeing Aircraft GEAE P&W

The Disconnect!

Materials "Knowledge Base"

Significant disconnect between materials development and the design/use of materials in components /systems

- Known alloy to reliable part 36 months
- Steels for navy landing gear 15+ years
- Lightweight composites for army vehicles 15+ years
- Ceramics for engines 20+++ years
- Changing ship steels 7-10 years

Materials Development

- Highly Empirical
- Testing Independent of Use
- Existing Models Unlinked

Systems Design

- Materials Input from "Knowledge Base" of Data (Data Sheets, Graphs, Heuristics, Experience, etc.)
- System/Sub-System Design is Heavily Computational and Rapid
 - Clean Sheet of Paper to Engine Design
 30 Months
- Well Established Testing Protocols

The Problem

- Current, empirical approach to materials development is time (& cost) intensive
 - Small, cautious steps in compositional variations, scale-up and processing changes
 - Multiple iterations produce limited (non-statistical) data
 - Early concentration on "primary" properties
 - Does not address designer's issues and needs
- Real insertion windows often open only for a short time
 - Materials are seldom "production ready"
 - Risk-to-benefit too high
- Outcome
 - Designers choose "known" material -- window closes!
 - Significant impact on performance/cost of past and future defense systems

Current Materials R&D

- Development of properties, processing done without quantifiable link to designer needs
 - -Optimized properties based on heuristic (gut) feel
 - Processing reality requires rework of properties, still no link to designer
 - -Production readiness steps reworks technology readiness
 - Designer knowledge base NOT ready until final stages

AIM Goals

Create a new materials development methodology that accelerates the insertion of new materials to achieve parity with the engine /platform development /design cycle

- Tightly couple design and materials activities and tools to establish design-driven material requirements
- Provide designer information earlier with confidence bounds throughout the development cycle
 - Materials performance, producibility, and cost
- Reduce insertion risk while decreasing reliance on costly, time consuming data generation
- Create a <u>Designer Knowledge Base</u> and tool kit that link with computational design tools

"Knowledge Base" Definition

- Validation of critical properties (with confidence limits)
 - F (composition, processing, structure, use conditions, ...)
- Confidence in scale-up, design and control of process(es)
- Confidence in manufacture of parts and components (e.g., weldability)
- Detailed assessment of costs
- Predictable reliability and life
- Etc....

AIM Objectives

Each data point has its own "resume"

Establish a <u>methodology</u> for accelerated insertion of materials into defense structures.

- Phase I
 - Establish a DKB for a currently employed material
 - Populate with data from models and/or experiments directed by the new methodology
 - Fully integrate into design tools
 - Validate against known material database (metals and composites)
 - Demonstrate reduction in insertion time
- Phase 2
 - » Establish a DKB for either a new material or an existing material in a new application.

AIM Paradigm in Materials R&D

- Development of properties, processing explicitly (through models/experiments) linked to designer
 - Development of designer knowledge base begins at outset of R&D
 - Optimized properties/processing based on designer need
 - -Time/effort refines knowledge base
 - Driven by properties, performance, accuracy really needed

Challenges

- Knowledge Base Construction
 - Content and Structure
 - Proper Mix of Experiments and Models
 - Knowledge of Uncertainty and Source
- Representation of Materials and Materials Properties
 - Full Composition/Microstructure/ Defects
 - Model Independent, Measurement Independent
 - Amenable to Both Model and Experimental Determination
- Linking of Scales
 - Hierarchical Averaging Principles for Scaling (Without Losing Extremes)
- New, Efficient Experimental Approaches
 - Linked to Models
 - Compatible with Legacy Data
- Propagation of Errors and Variations
 - In Models and Experiments

Progress

Conceptual

- Engaged designers
- Achieved visibility within parent organizations
- Understood challenge of the program
- Established aggressive goals

Technical

- Established preliminary architecture
 - DOME
 - aimSight/iSight
- Identified preliminary and back up models
 - Phenomenological and data driven models
 - Physics-based models for thermal, deformation processing, RTM.
- Identified needs for uncertainty and error propagation handling